Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Virol ; 91(8)2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28148803

RESUMO

Segment reassortment and base mutagenesis of influenza A viruses are the primary routes to the rapid evolution of high-fitness virus genotypes. We recently described a predominant G57 genotype of avian H9N2 viruses that caused countrywide outbreaks in chickens in China during 2010 to 2013, which led to the zoonotic emergence of H7N9 viruses. One of the key features of the G57 genotype is the replacement of the earlier A/chicken/Beijing/1/1994 (BJ/94)-like M gene with the A/quail/Hong Kong/G1/1997 (G1)-like M gene of quail origin. We report here the functional significance of the G1-like M gene in H9N2 viruses in conferring increased infection severity and infectivity in primary chicken embryonic fibroblasts and chickens. H9N2 virus housing the G1-like M gene, in place of the BJ/94-like M gene, showed an early surge in viral mRNA and viral RNA (vRNA) transcription that was associated with enhanced viral protein production and with an early elevated release of progeny virus comprising largely spherical rather than filamentous virions. Importantly, H9N2 virus with the G1-like M gene conferred extrapulmonary virus spread in chickens. Five highly represented signature amino acid residues (37A, 95K, 224N, and 242N in the M1 protein and 21G in the M2 protein) encoded by the prevalent G1-like M gene were demonstrated to be prime contributors to enhanced infectivity. Therefore, the genetic evolution of the M gene in H9N2 virus increases reproductive virus fitness, indicating its contribution to the rising virus prevalence in chickens in China.IMPORTANCE We recently described the circulation of a dominant genotype (genotype G57) of H9N2 viruses in countrywide outbreaks in chickens in China, which was responsible, through reassortment, for the emergence of H7N9 viruses that cause severe human infections. A key feature of the genotype G57 H9N2 virus is the presence of the quail-origin G1-like M gene, which had replaced the earlier BJ/94-like M gene. We found that H9N2 virus with the G1-like M gene, but not the BJ/94-like M gene, showed an early surge in progeny virus production and more severe pathology and extrapulmonary virus spread in chickens. Five highly represented amino acid residues in the M1 and M2 proteins derived from the G1-like M gene were shown to mediate enhanced virus infectivity. These observations enhance what we currently know about the roles of reassortment and mutations in virus fitness and have implications for assessing the potential of variant influenza viruses that can cause a rising prevalence in chickens.


Assuntos
Fibroblastos/virologia , Vírus da Influenza A Subtipo H9N2/fisiologia , Influenza Aviária/patologia , Vírus Reordenados/fisiologia , Proteínas da Matriz Viral/genética , Fatores de Virulência/genética , Replicação Viral , Animais , Galinhas , Análise Mutacional de DNA , Vírus da Influenza A Subtipo H9N2/genética , Vírus da Influenza A Subtipo H9N2/patogenicidade , Vírus da Influenza A Subtipo H9N2/ultraestrutura , Influenza Aviária/virologia , Vírus Reordenados/genética , Vírion/ultraestrutura , Virulência
2.
Sci Rep ; 6: 20744, 2016 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-26864902

RESUMO

The influenza A virus polymerase associates with a number of cellular transcription-related factors, including the RNA polymerase II (RNAP II). We previously described that the cellular protein hCLE/C14orf166 interacts with and stimulates influenza virus polymerase as well as RNAP II activities. Here we show that, despite the considerable cellular shut-off observed in infected cells, which includes RNAP II degradation, hCLE protein levels increase throughout infection in a virus replication-dependent manner. Human and avian influenza viruses of various subtypes increase hCLE levels, but other RNA or DNA viruses do not. hCLE colocalises and interacts with viral ribonucleoproteins (vRNP) in the nucleus, as well as in the cytoplasm late in infection. Furthermore, biochemical analysis of purified virus particles and immunoelectron microscopy of infected cells show hCLE in virions, in close association with viral vRNP. These findings indicate that hCLE, a cellular protein important for viral replication, is one of the very few examples of transcription factors that are incorporated into particles of an RNA-containing virus.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H9N2/genética , Ribonucleoproteínas/genética , Transativadores/genética , Proteínas Virais/genética , Vírion/genética , Células A549 , Animais , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Núcleo Celular/virologia , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Citoplasma/virologia , Cães , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H1N1/ultraestrutura , Vírus da Influenza A Subtipo H3N2/metabolismo , Vírus da Influenza A Subtipo H3N2/ultraestrutura , Vírus da Influenza A Subtipo H9N2/metabolismo , Vírus da Influenza A Subtipo H9N2/ultraestrutura , Células Madin Darby de Rim Canino , Microscopia Imunoeletrônica , Proteólise , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Ribonucleoproteínas/metabolismo , Transativadores/metabolismo , Proteínas Virais/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura , Replicação Viral
3.
Vaccine ; 34(8): 1126-32, 2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26529075

RESUMO

Vaccines are of great importance in controlling the spread of infectious diseases in poultry farming. The safety and efficacy of vaccines are also essential. To explore the feasibility of a novel technology (non-thermal plasma) in inactivated vaccine preparation, an alternating current atmospheric pressure non-thermal plasma (NTP) jet with Ar/O2/N2 as the operating gas was used to inactivate a Newcastle disease virus (NDV, LaSota) strain and H9N2 avian influenza virus (AIV, A/Chicken/Hebei/WD/98) for vaccine preparation. The results showed that complete inactivation could be achieved with 2 min of NTP treatment for both NDV and AIV. Moreover, a proper NTP treatment time is needed for inactivation of a virus without destruction of the antigenic determinants. Compared to traditional formaldehyde-inactivated vaccine, the vaccine made from NDV treated by NTP for 2 min (NTP-2 min-NDV-vaccine) could induce a higher NDV-specific antibody titer in specific pathogen-free (SPF) chickens, and the results of a chicken challenge experiment showed that NTP-2 min-NDV-vaccine could protect SPF chickens from a lethal NDV challenge. Vaccines made from AIV treated by NTP for 2 min (NTP-2 min-AIV-vaccine) also showed a similar AIV-specific antibody titer compared with traditional AIV vaccines prepared using formaldehyde inactivation. Studies of the morphological changes of the virus, chemical analysis of NDV allantoic fluid and optical emission spectrum analysis of NTP suggested that reactive oxygen species and reactive nitrogen species produced by NTP played an important role in the virus inactivation process. All of these results demonstrated that it could be feasible to use non-thermal NTP as an alternative strategy to prepare inactivated vaccines for Newcastle disease and avian influenza.


Assuntos
Influenza Aviária/prevenção & controle , Doença de Newcastle/prevenção & controle , Gases em Plasma , Vacinas Virais/imunologia , Inativação de Vírus , Animais , Anticorpos Antivirais/sangue , Galinhas , Testes de Inibição da Hemaglutinação , Testes de Hemaglutinação , Vírus da Influenza A Subtipo H9N2/ultraestrutura , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Vírus da Doença de Newcastle/ultraestrutura , Organismos Livres de Patógenos Específicos , Vacinas de Produtos Inativados/imunologia
4.
ACS Nano ; 6(1): 141-50, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22117089

RESUMO

Exploring the virus infection mechanisms is significant for defending against virus infection and providing a basis for studying endocytosis mechanisms. Single-particle tracking technique is a powerful tool to monitor virus infection in real time for obtaining dynamic information. In this study, we reported a quantum-dot-based single-particle tracking technique to efficiently and globally research the virus infection behaviors in individual cells. It was observed that many influenza viruses were moving rapidly, converging to the microtubule organizing center (MTOC), interacting with acidic endosomes, and finally entering the target endosomes for genome release, which provides a vivid portrayal of the five-stage virus infection process. This report settles a long-pending question of how viruses move and interact with acidic endosomes before genome release in the perinuclear region and also finds that influenza virus infection is likely to be a "MTOC rescue" model for genome release. The systemic technique developed in this report is expected to be widely used for studying the mechanisms of virus infection and uncovering the secrets of endocytosis.


Assuntos
Rastreamento de Células/métodos , Vírus da Influenza A Subtipo H9N2/ultraestrutura , Influenza Humana/patologia , Influenza Humana/virologia , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos , Pontos Quânticos , Células Cultivadas , Humanos , Vírion/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...